Production Networks

Meng, Junnan

Backgroun

Production Chains Production Networks Main Results

Uniquenes

odel

Concave Operators

Uniqueness

Computation

Extension

References

Equilibrium in a Model of Production Networks by Meng Yu and Junnan Zhang

Junnan Zhang

Panel Members: John Stachurski Simon Grant Ronald Stauber

Nov 13th, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Outline

Background

Production Chains Production Networks Main Results

Uniqueness

Model Concave Operators Uniqueness

Computation

Extension

References

Production Networks

Meng, Junnan

Backgroun

Production Chains Production Networks Main Results

Uniquenes

Aodel

Concave Operators

Uniqueness

Computation

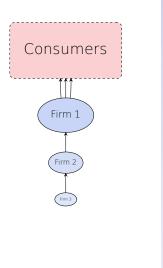
Extension

Reference

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Production Chains

- Kikuchi, Nishimura, and Stachurski (2018) ("Span of control, transaction costs, and the structure of production chains")
- Assumptions:
 - Cost function *c* increasing and strictly convex
 - Transaction cost δ > 1
 Firm 2 sells at p; Firm 1 pays δp



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Meng, Junnan

Backgroun

Production Chains Production Networks

Aain Results

Uniqueness

Model

Concave Operators

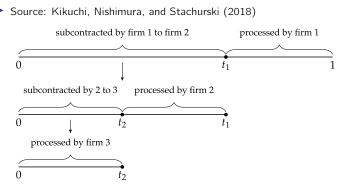
Uniqueness

Computation

Extension

References

Production Chains



• The firm at stage *s* chooses *t* to minimize cost:

$$\min_{t\leq s}\left\{c(s-t)+\delta p(t)\right\}$$

- For example, firm 2's total cost: $c(t_1 t_2) + \delta p(t_2)$
- Equilibrium price:

$$p^*(s) = \min_{t \le s} \left\{ c(s-t) + \delta p^*(t) \right\}$$

Production Networks

Meng, Junnan

Backgroun

Production Chains Production Networks Main Results

> iqueness odel

Concave Operator

Uniqueness

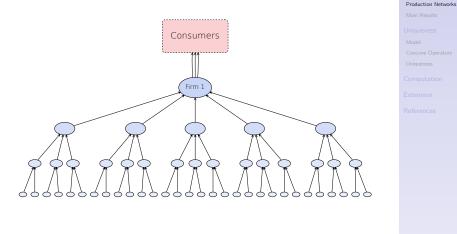
Computation

Extension

Reference

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

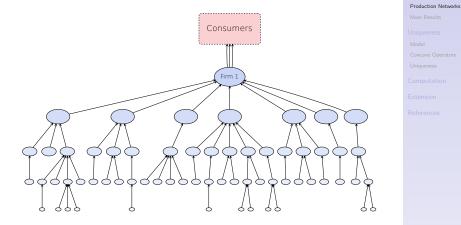
Production Networks



Production Networks

Meng, Junnan

Production Networks



Production Networks

Meng, Junnan

Main Results

Meng, Junnan

Backgroun

Production Chains Production Networks

Main Results

Uniqueness

lodel

Concave Operators

Uniquenes

Computation

Extension

References

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Uniqueness of the equilibrium price function
- An algorithm for faster computation
- Extension to the stochastic case

Model

▶ The stage of production is index by $s \in [0, 1]$

- Each firm faces
 - 1. price function $p: [0, 1] \rightarrow \mathbb{R}_+$
 - 2. cost function $c : [0, 1] \rightarrow \mathbb{R}_+$
 - 3. transaction costs $\delta > 1$ and $g : \mathbb{N} \to \mathbb{R}_+$

Assumptions:

- 1. c differentiable, increasing, and strictly convex
- 2. c(0) = 0 and c'(0) > 0
- 3. g(1) = 0, g strictly increasing, and $g(k) \rightarrow \infty$ as $k \rightarrow \infty$
- Firm at stage s minimizes cost

$$\min_{\substack{t \le s \\ k \in \mathbb{N}}} \left\{ c(s-t) + g(k) + \delta k p(t/k) \right\}$$

Production Networks

Meng, Junnan

Backgroun

Production Chains Production Networks Main Results

Jniqueness

Model

Concave Operators

Uniqueness

Computation

Extension

References

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Equilibrium

Equilibrium price p* satisfies

$$p^*(s) = Tp^*(s) := \min_{\substack{t \le s \\ k \in \mathbb{N}}} \{c(s-t) + g(k) + \delta k p^*(t/k)\}$$

- Find the fixed point of operator T
- Problem: contraction mapping doesn't work because $\delta > 1$

Production Networks

Meng, Junnan

Backgroun

Production Chains Production Networks Main Results

Uniqueness

Model

Concave Operators

Uniqueness

Computation

Extension

References

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへぐ

Monotone Concave Operator Theory

Basic Idea

- A theorem due to Du (1989)
- Consider a function T defined on $[u_0, v_0]$. If
 - 1. $\ensuremath{\mathcal{T}}$ is increasing and concave
 - 2. $T(u_0) > u_0$
 - 3. $T(v_0) < v_0$
- Then
 - 1. T has a unique fixed point x^* in $[u_0, v_0]$
 - 2. $T^n(x) \rightarrow x^*$ for all $x \in [u_0, v_0]$

Production Networks

Meng, Junnan

Backgroun

Production Chains Production Networks Main Results

Uniquenes

Model

Concave Operators

Uniqueness

Computation

Extension

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Monotone Concave Operator Theory

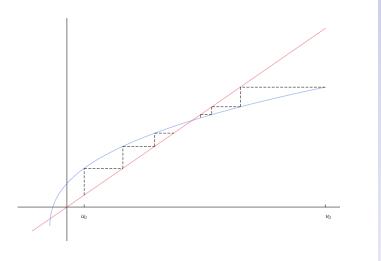


Figure 1: A Simple Example in \mathbb{R}

Production Networks

Meng, Junnan

Concave Operators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Monotone Concave Operator Theory

General Version (Du 1989)

- ▶ Theorem 3.1 in the paper
- T is defined on any partially ordered Banach space
 - 1. [u₀, v₀]: an order interval
 - 2. Similar definitions of increasing and concave operators
 - 3. Other technical conditions on the Banach space
- ▶ $T^n(x) \to x^*$ in norm

Production Networks

Meng, Junnan

Backgroun

Production Chains Production Networks Main Results

Uniquenes

Model

Concave Operators

Uniqueness

Computation

Extension

References

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Uniqueness Result

Theorem 3.2

Let $u_0(s) = c'(0)s$, $v_0(s) = c(s)$, and $[u_0, v_0]$ be the order interval on C([0, 1]) with the usual partial order. If the above assumptions hold, then T has a unique fixed point p^* in $[u_0, v_0]$. Furthermore, $T^n p \to p^*$ for any $p \in [u_0, v_0]$.

$$p^{*}(s) = Tp^{*}(s) = \min_{\substack{t \le s \\ k \in \mathbb{N}}} \{c(s-t) + g(k) + \delta k p^{*}(t/k)\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Production Networks

Meng, Junnan

Backgroun

Production Chains Production Networks Main Results

Uniqueness Model

Uniqueness

Computation

Extensior

Reference

Equilibrium Price

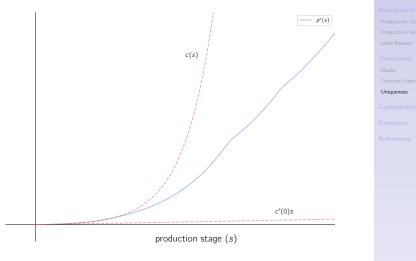


Figure 2: An example of equilibrium price function

Production Networks

Meng, Junnan

Computation

- One way to compute p^{*} is pick any p ∈ [u₀, v₀] and compute Tⁿp with large n: usually slow
- A faster algorithm
 - 1. Choose grid points $\{0, h, 2h, \ldots, 1\}$
 - 2. Set p(0) = 0 and s = h
 - 3. Repeat:
 - i Set p(s) by

$$p(s) = \min_{\substack{t \le s-h \\ k \in \mathbb{N}}} \{c(s-t) + g(k) + \delta k p(t/k)\}$$

- ii Define p on [0, s] by linear interpolation
- iii Set s = s + h; if s > 1, stop
- Advantage: for a certain number of grid points, the number of optimizations required is fixed

Production Networks

Meng, Junnan

Backgroun

Production Chains Production Networks Main Results

Jniqueness Model Concave Operators Uniqueness

Computation

Extension

Reference

Convergence

Theorem 4.1

As the number of grid points goes to infinity, the price functions computed from the algorithm converge to p^* uniformly.

Production Networks

Meng, Junnan

Backgroun

Production Chains Production Networks Main Results

Uniquenes

Model Concave Operators Uniqueness

Computation

Extension

References

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへぐ

Speed

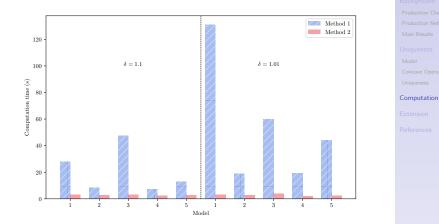


Figure 3: Speed comparison

Production Networks

Meng, Junnan

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

Stochastic Case

- What if firms cannot choose the exact number of upstream partners?
- We assume each firm chooses a "search effort" λ: the resulting number of partners follows a Poisson distribution

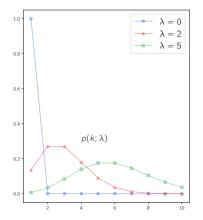


Figure 4: Distributions for different λ

Production Networks

Meng, Junnan

Production Network
Concave Operators
Uniqueness
Extension

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Equilibrium

New equilibrium price:

$$p^*(s) = \min_{\substack{t \le s \\ \lambda \ge 0}} \left\{ c(s-t) + \mathbb{E}_k^{\lambda} \left[g(k) + \delta k p^*(t/k) \right] \right\}$$

 Under the same assumptions, uniqueness holds and the algorithm works

Production Networks

Meng, Junnan

Backgroun

Production Chains Production Networks Main Results

Jniqueness

Model Concave Operators

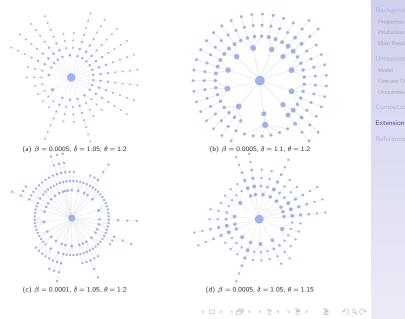
Computation

Extension

Reference

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

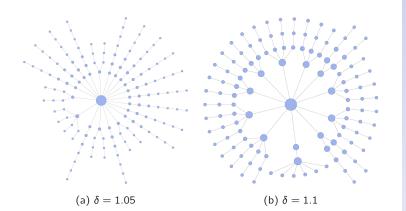
Specification: $c(s) = s^{\theta}$, $g(k) = \beta(k-1)^{1.5}$



Production Networks

Meng, Junnan

Specification: $c(s) = s^{\theta}$, $g(k) = \beta(k-1)^{1.5}$



Production Networks

Meng, Junnan

Backgroun

Production Chains Production Networks Main Results

Iniqueness

Model Concave Operators

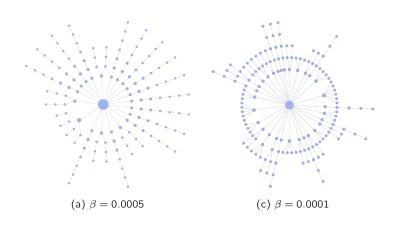
Computation

Extension

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Specification: $c(s) = s^{\theta}$, $g(k) = \beta(k-1)^{1.5}$



Production Networks

Meng, Junnan

Backgroun

Production Chains Production Networks Main Results

Jniqueness

odel

....

. . . .

Extension

Reference

くしゃ (雪をく目をくし)

Specification: $c(s) = s^{\theta}$, $g(k) = \beta(k-1)^{1.5}$

Production Networks

Meng, Junnan

Extension

(a) $\theta = 1.2$

(d) $\theta = 1.15$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

References

Meng, Junnan

References

Kikuchi, Tomoo, Kazuo Nishimura, and John Stachurski. 2018. Span of control, transaction costs, and the structure of production chains Theoretical Economics 13(2), 729-760.

Du, Yihong. 1989.

Fixed points of a class of non-compact operators and applications Acta Mathematica Sinica 32(5), 618-627.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで