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Coase Meets Bellman

Problem Description

Kikuchi et al.

Introduction

* 7o H t
v (X) :=min L(a
(9 :=min 3 6%(a)
o0
s.t. Zatzﬁ, ar>0
t=0
» The agent takes action a; in period t and suffers loss £(a)

» Assume that 8> 1, £(0)=0,¢ >0, and £ >0

P |t doesn't help to transform it to a maximization problem
o0
max Y 4'(—4(a:))
{at} =0

» | agrange multipliers?

3/29



Coase Meets Bellman

Problem Description

Kikuchi et al.

Introduction

vi(R) = Talf? ; B4(ar)

oo
s.t. Zatzﬁ, ar>0
t=0

> Set Xo = X and Xt+1 = Xt — at
» Does v* satisfy the Bellman equation?
V() = min {e(a)+ Bv(x - a)}

» Why study the Bellman equation?

1. Use results from dynamic programming

2. Different economic interpretations
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An Abstract Dynamic Program

Kikuchi et al.

General Theory
» A dynamic program consists of

State space X

Action space A

Feasible correspondence ['(x) C A

P v =

Continuation aggregator H(x, a, v)

» The Bellman equation is
v(x) = (Tv)(x):= inf H(x,a,v)
aelr(x)
» Example: X = A=10, %], I'(x) =[0, x], and

H(x,a,v) =4£(a) + Bv(x — a)
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Fixed Point Results

Kikuchi et al.

General Theory

Assumptions:
1. H(x, a, v) is increasing and concave in v
2. There exist ¢, such that T is a self-map on [¢, Y]
3. Other technical conditions

Theorem

T has a unique fixed point v € [¢, ¥], T"v — v for all v € [¢, ], and
7 (x) := arg min,er(,) H(x, a, V) is upper hemicontinuous. Under
additional assumptions, v is increasing, convex, and continuously
differentiable on int X and v'(x) = Hx(x, (x), V).
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Optimality

Kikuchi et al.
Definitions

General Theory

> Any o corresponds to a policy operator
(Tov)(x) := H(x,o(x), V)

» For a sequence of feasible policies ™ = (09, 01, . ..), define the

m-value function
vr(x) = Jer;O(TJO Toy - Ton®)(x)
» The value function is v*(x) := infx vr(x)
» The optimal policy 7* is such that v* = v

> Stationary policies (o, 0, ...)
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Optimality

Assumptions:
1. Ifvatv, Hx,a,vn) = H(x,a,v)
2. There exists 8 > 0 such that for all r > 0

H(x,a,v+r) < H(x av)+pr

Theorem

The value function solves the Bellman equation and v*

exists a stationary optimal policy ¢* and ¢ = G.

= V. There

Coase Meets Bellman

Kikuchi et al.

General Theory
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Negative Discount Dynamic Programming

Kikuchi et al.

— _ < H H *
Recall that x;11 = xt — ar and xo = X. We aim to find ¢* such that AT ——

a; = 0" (x¢) solves

v (%) ;= min ZB( ar) st Zatzf(, a >0

S t=0
Let ¢p(x) = £ (0)x and P (x) = £(x)
Theorem
1. v* is a fixed point of the Bellman operator
(TV)() = inf {(a) + Bu(x - a)}

and T"v — v* for all v € [¢, Y]
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Negative Discount Dynamic Programming

Kikuchi et al.

Theorem (cont.)

Negative Discount DP

2. There is a unique optimal policy given by
o*(x) = argmin {£(a) + BV (x — a)},
0<a<x
and o* is increasing

3. v* is strictly increasing, strictly convex, and continuously
differentiable on (0, X) with (v*)'(x) = £(c*(x))

4. {a;} is decreasing and satisfies

¢(at) = max{%f(a:), e’(o>}
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Negative Discount Dynamic Programming

Kikuchi et al.

Negative Discount DP

Theorem
When £(0) = 0, {a;} is optimal if and only if 3¢ (a;y,) = £'(a;). The
sequence is unique, decreasing, and strictly positive. Furthermore,
v =Tv".
To solve the Bellman equation:
> If £(0) > 0, we use the Bellman operator directly

> If £(0) = 0, we use the Euler equation
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Reinterpretation

Kikuchi et al.

> Time index — an index over decision making entities

> Tasks are completed sequentially Applications

total cost for agent 1

total cost for agent 0 = £(ao) + ﬂ[@(al) +B(&a)+B(...) )}

total cost for agent 2

» A social planner’s problem

* 7o . t o
v (X) ;== min l(a s.t. ar=2X, a>0
()= in 3 pa) st Y oa=% o

t=0

» A decentralized problem

vi(x) := min {£(a) + Bv"(x - a)}
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Production Chains
Kikuchi et al. (2018)

vV V. v v Vv

Kikuchi et al.

Competitive market with price-taking firms indexed by / Applications

Produce a unit of good: implementing a sequence of tasks
The allocation of tasks {a;} satisfies Y, ai =1

Define firm boundaries: by = 1 and bj+1 = bj — a;

Profits of the ith firm are

i = p(bi) — c(ai) — (1 + 7)p(bit1)

where p is price, ¢ is production cost, and T is transaction cost
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Production Chains
Kikuchi et al. (2018)

Kikuchi et al.

Definition
Applications
The pair (p,{ai}) is called an equilibrium for the production chain if
1. m =0 for all /.
2. p(s)—c(s—1t)— (14 71)p(t) <0 for any pair s, t with
0<t<s<1,and

Theorem
Let kX =1,£=c, and 8 =1+7. Then, (v*,{aj}) is an equilibrium for

the production chain.
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City Hierarchy

Kikuchi et al.

» An alternative theory of city size distribution (Hsu, 2012; Hsu
et al., 2014)

Applications

» Cities are built to host a continuum of dwellers of measure one
> A government opens competition for city developers

» Each developer builds a city of a certain size and pays other

developers to build “satellite cities”
» | ayers of cities are formed indexed by /

» Price function p, building cost ¢, tax rate T
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City Hierarchy

Kikuchi et al.

Applications
P> A developer assigned to host s dwellers maximizes profits

max {p(s) — c(s — 1) — (L +)kp(t/k)}
» The equilibrium price function satisfies

p(s) = min {c(s —t) + (1 +7)kp(t/k)}

> let c(s)=s"withy>1andlet k=2
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City Hierarchy

Kikuchi et al.

Applications
» The Euler equation: ¢'(af) = (1 + 7)c'(ajy1)

> If0:=(1+7)Y0 < 1/2 then af = 6'(1 — 260) and
vi(s) = (1 —20)""ts"

> p = v* solves the Bellman equation and is an equilibrium price
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City Hierarchy

Kikuchi et al.

0.2

Applications

city size

(‘\ ("\

0.0 Jl\\l\\ll\l\\l\ll\\ll\l\

Figure 1: lllustration of optimal city hierarchy.

The size distribution follows a power law:

In(Rank) = —'”l(l(é)) In(Size) + C
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Knowledge and Communication

v

Hierarchical organization of knowledge (Garicano, 2000)
A firm requires employees solve a set of problems [0, 1]
A market for knowledge among management layers

The ith layer is assigned mj;, learns to solve z at cost c(z;) and

passes on the remainder mj;1 = m; — z; to layer i + 1

Price function p, communication cost T

Coase Meets Bellman

Kikuchi et al.

Applications

22/29



Coase Meets Bellman

Knowledge and Communication

Kikuchi et al.

> The pl’OfitS Of the Ith |ayer Applications
m = p(mi) — c(z) — (L + 7)p(m; — z)
» The equilibrium price satisfies

p(mi) = o min_ {c(mi — miz1) + (1 4+ 7)p(mit1)}

SMig1<m,
> Assume that n employees can solve f(n). Then c(z) = wf *(2).

» {z} is decreasing, so {n;} is decreasing
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Knowledge and Communication

i

(b) T=04

(c)T=0.6
Figure 2: Optimal organizational structures.
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Problem Description

» An agent takes actions a(-)

V() = min /OO et 0(a(t))dt
s.t. /0O a(t)dt =%
0
a(t) >0

> Assume that p >0, £(0) =0, ¢ >0, and £’ >0
> Define x(t) = % — [; a(s)ds = [ a(s)ds

Coase Meets Bellman

Kikuchi et al.

Continuous-Time
Theory
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Problem Description

Kikuchi et al.

Theorem

1. The unique optimal solution is

Continuous-Time

a’(t) = argmin {€”4(a) + Xa}
a>0
- Theory

where X is a constant uniquely determined by [;° a*(t)dt = x.

2. v*(x) is differentiable when x > 0 and satisfies
—pv*(x) = inf {&(a) — (v') (x)a}
with boundary condition v*(0) = 0

3. The optimal action a* at state x satisfies

—pv'(x) = inf {£(a) = (V') (x)a} = £(a") = (v))'(x)a"
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Problem Description
Theorem (cont.)

4. The optimal action a*(t) is decreasing in t

1.0

0.8

0.2

0.0

0 1 2 3 4
time (t)

Figure 3: Optimal action and optimal state path
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Continuous-Time
Theory

28/29



Coase Meets Bellman

References -
Kikuchi et al.
Garicano, L. (2000): “Hierarchies and the organization of knowledge in
production,” Journal of Political Economy, 108, 874—904.
Hsu, W.-T. (2012): “Central place theory and city size distribution,” The
Economic Journal, 122, 903-932. References

Hsu, W.-T., T. J. Holmes, and F. Morgan (2014): “Optimal city hierarchy:
A dynamic programming approach to central place theory,” Journal of
Economic Theory, 154, 245-273.

Kikuchi, T., K. Nishimura, and J. Stachurski (2018): “Span of control,
transaction costs, and the structure of production chains,” Theoretical
Economics, 13, 729-760.

29 /29



	Introduction
	General Theory
	Negative Discount DP
	Applications
	Continuous-Time Theory
	References

